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Summary. The dynamic behavior of a crack in a functionally graded piezoelectric material (FGPM) strip

bonded to two half dissimilar piezoelectric material planes subjected to combined harmonic anti-plane

shear wave and in-plane electrical loading was studied under the limited permeable and permeable electric

boundary conditions. It was assumed that the elastic stiffness, piezoelectric constant and dielectric per-

mittivity of the functionally graded piezoelectric layer vary continuously along the thickness of the strip.

By using the Fourier transform, the problem can be solved with a set of dual integral equations in which

the unknown variables are the jumps of the displacements and the electric potentials across the crack

surfaces. In solving the dual integral equations, the jumps of the displacements and the electric potentials

across the crack surfaces were expanded in a series of Jacobi polynomials. Numerical results illustrate the

effects of the gradient parameter of FGPM, electric loading, wave number, thickness of FGPM strip and

electric boundary conditions on the dynamic stress intensity factors (SIFs).

1 Introduction

Piezoelectric materials have been attractive materials for transducer and sensor applications

due to the inherent electro-mechanical coupling behavior. However, most piezoelectric mate-

rials are brittle and many types of defects or cracks may be produced in piezoelectric materials

during manufacturing processes. More and more piezoelectric devices are multi-layered, and

they are susceptible to cracking due to uneven stress distributions or metal-to-ceramic bonds at

which stress concentration occurs. Therefore,it is important to study the electro-elastic inter-

action and fracture behaviors of piezoelectric materials.

In recent years, researchers pay more attention to functionally graded materials (FGMs).

FGMs are inhomogeneous materials which the material properties vary continuously in one or

more directions. The concept of FGMs has been applied to piezoelectric materials to improve

the reliability of piezoelectric materials and structures [1]–[3]. More recently, studies on fracture

mechanic behavior of FGPMs have received some attention. Li and Weng [4] first considered

the static anti-plane problem of a finite crack in an FGPM strip. They found that the singular

stress and electric displacement at crack tips in an FGPM carry the same forms as those in a

homogeneous piezoelectric material. It was also found that an increase in the gradient

parameter of an FGPM could reduce the magnitude of the stress intensity factor. Wang [5]

considered the anti-plane problem of an infinite FGPM. Ueda [6] solved the problem of a crack

in an FGPM bonded to two elastic surface layers. Kwon [7] studied the electrical nonlinear
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behavior of an anti-plane shear crack in a functionally graded piezoelectric strip by using the

strip saturation model within the framework of linear electro-elasticity. Chen et al. [8]–[9]

solved the problem of transient response of a functionally graded piezoelectric medium for a

through crack under the anti-plane or in-plane mechanical and electric impact. Some

researchers [10]–[12] studied moving mode-III crack in FGPM. In Refs. [4]–[12], the unknown

variables of dual integral equations were the dislocation density functions and the dual integral

equations were solved by using the singular integral equation method. To our knowledge, no

report was presented on dynamic behavior of a crack in an FGPM strip bonded to two

dissimilar half piezoelectric material planes.

One important issue in studying fracture mechanics of piezoelectric materials is the electric

boundary condition along the crack surfaces. There are two well-accepted electric boundary

conditions: the permeable and impermeable boundary conditions. Some researchers [13]–[14]

also suggested the boundary condition in the following form:

Dþ2 ¼ D�2 ;D
þ
2 uþ � u�ð Þ ¼ e0 /þ � /�

� �

in which Di, /, e0 and uþ � u�ð Þ are the electric displacement component, the electric potential,

the permittivity of air and the opening displacement component. This boundary condition will

be reduced to the permeable boundary condition when uþ � u� ¼ 0 and to the impermeable

one when e0 ¼ 0. Since no opening displacement uþ � u�ð Þ exists for the mode-III crack, this

type of limited permeable electric boundary condition as mentioned above is not suitable for

the mode-III crack problem in piezoelectric materials.

In this paper, in order to reveal the difference of these boundary conditions, the dynamic

behavior of a mode-III crack in an FGPM strip bonded to two dissimilar half piezoelectric

material planes was studied by use of the Schmidt method [15] under the limited permeable and

permeable electric boundary conditions. By use of the Fourier transform, the problem could be

solved with a set of dual integral equations in which the unknown variables are the jumps of the

displacements and the electric potentials across the crack surfaces. In solving the dual integral

equations, the jumps of the displacements and the electric potentials across the crack surfaces

were expanded in a series of Jacobi polynomials. This process is quite different from those

adopted in the Refs. [4]–[12] as mentioned above. Some numerical results are presented

graphically to show the effects of the gradient parameter of the FGPM, wave number, electric

loading, thickness of the FGPM strip and electric boundary conditions on the dynamic stress

intensity factors.

2 Problem statement

Consider a crack of length 2a in an FGPM strip of width h1 þ h2 bonded between two dis-

similar half piezoelectric material planes. A Cartesian system (x, y, z) is positioned with its

origin at the center of the crack. Note that the z-axis is oriented in the poling direction of the

piezoelectric materials, and the xy-plane is the transversely isotropic plane, x ¼ 0 is a plane of

geometric symmetry, as shown in Fig. 1. The harmonic anti-plane mechanical and in-plane

electrical waves are vertically incident. The mechanical and electrical fields corresponding to

steady state incident waves can be expressed in terms of the frequency x, such that

syz x; y; tð Þ ¼ s0 exp �ixtð Þ and Dy x; y; tð Þ ¼ D0 exp �ixtð Þ. For the sake of convenience, the

time dependence of all field quantities assumed to be of the form exp �ixtð Þ will be suppressed
and we only consider that s0 and D0 are positive. Because of the assumed symmetry in geometry

and loading, it is sufficient to consider the problem for x > 0, �1 < y < þ1 only.
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As shown in Fig. 1, we assume the material properties are described by [8]

c
ð1Þ
44 e

ð1Þ
15 eð1Þ11 qð1Þ

� �
¼ ebh1 c

ð0Þ
44 e

ð0Þ
15 eð0Þ11 qð0Þ

� �
; y � h1; ð1Þ

c
ðkÞ
44 e

ðkÞ
15 eðkÞ11 qðkÞ

� �
¼ eby

c
ð0Þ
44 e

ð0Þ
15 eð0Þ11 qð0Þ

� �
; k ¼ 2; 3;�h2 � y � h1; ð2Þ

c
ð4Þ
44 e

ð4Þ
15 eð4Þ11 qð4Þ

� �
¼ e�bh2 c

ð0Þ
44 e

ð0Þ
15 eð0Þ11 qð0Þ

� �
; y � �h2; ð3Þ

where c
ðkÞ
44 , e

ðkÞ
15 , eðkÞ11 and q kð Þ are the shear modulus, the piezoelectric coefficient, the dielectric

parameter and the mass density, while superscripts k ¼ 1; 2; 3; 4 refer to the upper half plane 1,

layer 2, layer 3 and lower half plane 4, respectively.

The constitutive equations of the anti-plane piezoelectric materials are

sðkÞjz ¼ lðkÞwðkÞ;j þ e
ðkÞ
15 wðkÞ;j ; D

ðkÞ
j ¼ �eðkÞ11 wðkÞ;j ð4Þ

in which wðkÞ ¼ /ðkÞ � e
ðkÞ
15

eðkÞ
11

wðkÞ, lðkÞ ¼ c
ðkÞ
44 þ

e
ðkÞ2
15

eðkÞ
11

ðk ¼ 1; 2; 3; 4; j ¼ x; y), where wðkÞ is the

Bleustein function [16], sðkÞjz and D
ðkÞ
j are the stress and electric displacement components, w

ðkÞ
;j is

strain tensor, /ðkÞ and wðkÞ are the electric potential and the mechanical displacement.

The dynamic anti-plane governing equations for homogeneous piezoelectric materials are

given by

c
ð0Þ
44r2wðkÞ þ e

ð0Þ
15r2/ðkÞ ¼ q 0ð Þ @

2wðkÞ

@t2
; ð5Þ

e
ð0Þ
15r2wðkÞ � eð0Þ11r2/ðkÞ ¼ 0; ð6Þ

in whichr2 ¼ @2
�

x2 þ @2
�

y2 is the two-dimensional Laplacian operator in the variables x and y.

The dynamic anti-plane governing equations for functionally graded piezoelectric materials are

given by

c
ð0Þ
44 r2 þ b

@

@y

� �
wðkÞ þ e

ð0Þ
15 r2 þ b
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� �
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Fig. 1. Crack in functionally graded
piezoelectric material
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e
ð0Þ
15 r2 þ b

@

@y

� �
wðkÞ � eð0Þ11 r2 þ b

@

@y

� �
/ðkÞ ¼ 0: ð8Þ

The continuity boundary conditions can be stated as below

sð1Þyz x;h1ð Þ ¼ sð2Þyz x;h1ð Þ /ð1Þ x;h1ð Þ ¼ /ð2Þ x;h1ð Þ

D
ð1Þ
y x;h1ð Þ ¼ D

ð2Þ
y x;h1ð Þ wð1Þ x;h1ð Þ ¼ wð2Þ x;h1ð Þ

; x > 0 ð9Þ

sð2Þyz x; 0ð Þ ¼ sð3Þyz x; 0ð Þ /ð2Þ x; 0ð Þ ¼ /ð3Þ x; 0ð Þ

D
ð2Þ
y x; 0ð Þ ¼ D

ð3Þ
y x; 0ð Þ wð2Þ x; 0ð Þ ¼ wð3Þ x; 0ð Þ

; x > a ð10Þ

sð3Þyz x;�h2ð Þ ¼ sð4Þyz x;�h2ð Þ /ð3Þ x;�h2ð Þ ¼ /ð4Þ x;�h2ð Þ

D
ð3Þ
y x;�h2ð Þ ¼ D

ð4Þ
y x;�h2ð Þ wð3Þ x;�h2ð Þ ¼ wð4Þ x;�h2ð Þ

; x > 0 ð11Þ

As discussed in [17], since the opening displacement is zero for the present anti-plane shear

problem, the crack surfaces can be assumed to be in perfect contact. Accordingly, both the

electric potential and normal electric displacement are assumed to be continuous across the

crack surfaces. So the boundary conditions of the present problem are:

Case I:

sð2Þyz x; 0ð Þ ¼ sð3Þyz x; 0ð Þ ¼ �s0 D
ð2Þ
y x; 0ð Þ ¼ D

ð3Þ
y x; 0ð Þ

/ð2Þ x; 0ð Þ ¼ /ð3Þ x; 0ð Þ
; 0 < x < a: ð12:1Þ

In order to reveal the difference between the limited permeable and permeable electric boundary

conditions, the limited permeable electric boundary condition as given in the reference [10] is

also considered in the present paper. It can be rewritten as follows:

Case II:

sð2Þyz x; 0ð Þ ¼ sð3Þyz x; 0ð Þ ¼ �s0; D
ð2Þ
y x; 0ð Þ ¼ D

ð3Þ
y x; 0ð Þ ¼ Dc

y � D0 ; 0 < x < a; ð12:2Þ

where Dc
y and D0 are the normal component of the electric displacement and electric loading on

the crack faces.

From case II, it can be seen that the limited permeable electric boundary condition can be

reduced to the impermeable electric boundary condition when Dc
y ¼ 0. However, it can not be

reduced to the permeable electric boundary condition when Dc
y ¼ D0. It can be explained by the

reason that, in this case, the electric potentials at crack surfaces are different.

By use of the Fourier cosine transforms, the solutions of the governing equations are as

follows:

wð1Þ x; yð Þ ¼ 2
p

R1
0 A1 sð Þe�cy cos sxð Þds

wð1Þ x; yð Þ ¼ 2
p

R1
0 C1 sð Þe�sy cos sxð Þds

; y � h1 ð13Þ

wðkÞ x; yð Þ ¼ 2
p

R1
0 Ak sð Þem1y þ Bk sð Þem2y½ � cos sxð Þds

wðkÞ x; yð Þ ¼ 2
p

R1
0 Ck sð Þen1y þ Dk sð Þen2y½ � cos sxð Þds

; k ¼ 2; 3;�h2 � y � h1 ð14Þ

wð4Þ x; yð Þ ¼ 2
p

R1
0 B4 sð Þecy cos sxð Þds

wð4Þ x; yð Þ ¼ 2
p

R1
0 D4 sð Þesy cos sxð Þds

; y � �h2 ð15Þ

where
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m1 ¼ �
b
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

� �2

þs2 � x2

c2

s

; m2 ¼ �
b
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

� �2

þs2 � x2

c2

s

; n1 ¼ �
b
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

� �2

þs2

s

;

n2 ¼ �
b
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

� �2

þs2

s

; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � x2

c2

r

; c2 ¼ lð0Þ
.

qð0Þ; lð0Þ ¼ c
ð0Þ
44 þ e

ð0Þ2
15

.
eð0Þ11 :

Ak sð Þ;Ck sð Þðk ¼ 1; 2; 3Þ;Bk sð Þ;Dk sð Þðk ¼ 2; 3; 4Þ are unknown functions to be determined from

the boundary conditions.

Substituting those solutions into Eq. (4), one obtains the stress and electric displacement

fields

sð1Þyz x; yð Þ ¼ � 2
p ebh1

R1
0 lð0ÞcA1 sð Þe�cy þ e

ð0Þ
15 sC1 sð Þe�sy

h i
cos sxð Þds;

D
ð1Þ
y x; yð Þ ¼ 2

p ebh1
R1

0 eð0Þ11 sC1 sð Þe�sy cos sxð Þds;

/ð1Þ x; yð Þ ¼ e
ð0Þ
15

eð0Þ
11

2
p

R1
0 A1 sð Þe�cy cos sxð Þdsþ 2

p

R1
0 C1 sð Þe�sy cos sxð Þds;

ð16Þ

sðkÞyz x; yð Þ ¼ 2
p eby

R1
0

n
lð0Þ m1Ak sð Þem1y þm2Bk sð Þem2y½ �:

þe
ð0Þ
15 n1Ck sð Þen1y þ n2Dk sð Þen2y½ �

o
cos sxð Þds;

D
ðkÞ
y x; yð Þ ¼ � 2

p eby
R1

0 eð0Þ11 n1Ck sð Þen1y þ n2Dk sð Þen2y½ � cos sxð Þds;

/ðkÞ x; yð Þ ¼ e
ð0Þ
15

eð0Þ
11

2
p

R1
0 Ak sð Þem1y þ Bk sð Þem2y½ � cos sxð Þds

þ 2
p

R1
0 Ck sð Þen1y þ Dk sð Þen2y½ � cos sxð Þds;

ð17Þ

sð4Þyz x; yð Þ ¼ 2
p e�bh2

R1
0 lð0ÞcB4 sð Þecy þ e

ð0Þ
15 sD4 sð Þesy

h i
cos sxð Þds;

D
ð4Þ
y x; yð Þ ¼ � 2

p e�bh2
R1

0 eð0Þ11 sD4ðsÞesy cos sxð Þds;

/ð4Þ x; yð Þ ¼ e
ð0Þ
15

eð0Þ
11

2
p

R1
0 B4 sð Þecy cos sxð Þdsþ 2

p

R1
0 D4 sð Þesy cos sxð Þds:

ð18Þ

To solve the problem, the jumps of the displacements and the electric potentials across the

crack surfaces are defined as follows:

fw xð Þ ¼ wð2Þ x; 0ð Þ �wð3Þ x; 0ð Þ; ð19Þ

f/ xð Þ ¼ /ð2Þ x; 0ð Þ � /ð3Þ x; 0ð Þ: ð20Þ

Substituting Eqs. (14) and (17) into Eqs. (19)–(20), and applying Fourier cosine transforms with

the boundary conditions, it can be obtained

Case I:

fw sð Þ ¼ A2 sð Þ þ B2 sð Þ � A3 sð Þ � B3 sð Þ; ð21:1Þ

f/ sð Þ ¼ e
ð0Þ
15

eð0Þ11

A2 sð Þ þ B2 sð Þ � A3 sð Þ � B3 sð Þ½ � þ C2 sð Þ þ D2 sð Þ � C3 sð Þ � D3 sð Þ ¼ 0: ð21:2Þ

Case II:

fw sð Þ ¼ A2 sð Þ þ B2 sð Þ � A3 sð Þ � B3 sð Þ; ð22:1Þ
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f/ sð Þ ¼ e
ð0Þ
15

eð0Þ11

A2 sð Þ þ B2 sð Þ � A3 sð Þ � B3 sð Þ½ � þ C2 sð Þ þ D2 sð Þ � C3 sð Þ � D3 sð Þ: ð22:2Þ

By applying Fourier cosine transforms to Eqs. (13)–(18) with boundary conditions (9)–(12), it

can be obtained

A1 sð Þe�ch1 ¼ A2 sð Þem1h1 þ B2 sð Þem2h1 ; ð23Þ

e
ð0Þ
15

eð0Þ11

A1 sð Þe�ch1 þ C1 sð Þe�sh1 ¼ e
ð0Þ
15

eð0Þ11

A2 sð Þem1h1 þ B2 sð Þem2h1
	 


þ C2 sð Þen1h1 þ D2 sð Þen2h1 ð24Þ

� lð0ÞcA1 sð Þe�ch1 � e
ð0Þ
15 sC1 sð Þe�sh1

¼ lð0Þ m1A2 sð Þem1h1 þm2B2 sð Þem2h1
	 


þ e
ð0Þ
15 n1C2 sð Þen1h1 þ n2D2 sð Þen2h1
	 


; ð25Þ

sC1 sð Þe�sh1 ¼ � n1C2 sð Þen1h1 þ n2D2 sð Þen2h1
	 


; ð26Þ

lð0Þ m1A2 sð Þ þm2B2 sð Þ½ � þ e
ð0Þ
15 n1C2 sð Þ þ n2D2 sð Þ½ �

¼ lð0Þ m1A3 sð Þ þm2B3 sð Þ½ � þ e
ð0Þ
15 n1C3 sð Þ þ n2D3 sð Þ½ �; ð27Þ

n1C2 sð Þ þ n2D2 sð Þ ¼ n1C3 sð Þ þ n2D3 sð Þ; ð28Þ

A3 sð Þe�m1h2 þ B3 sð Þe�m2h2 ¼ B4 sð Þe�ch2 ; ð29Þ

e
ð0Þ
15

eð0Þ11

A3 sð Þe�m1h2 þ B3 sð Þe�m2h2
	 


þ C3 sð Þe�n1h2 þ D3 sð Þe�n2h2 ¼ e
ð0Þ
15

eð0Þ11

B4 sð Þe�ch2 þ D4 sð Þe�sh2 ;

ð30Þ

lð0Þ m1A3 sð Þe�m1h2 þm2B3 sð Þe�m2h2
	 


þ e
ð0Þ
15 n1C3 sð Þe�n1h2 þ n2D3 sð Þe�n2h2
	 


¼ lð0ÞcB4 sð Þe�ch2þe
ð0Þ
15

sD4 sð Þe�sh2 ;

ð31Þ

n1C3 sð Þe�n1h2 þ n2D3 sð Þe�n2h2 ¼ sD4 sð Þe�sh2 : ð32Þ

By solving the twelve equations (21) (case I ) or (22) (case II ) and (23)–(32) with twelve

unknown functions Ak sð Þ, Ck sð Þ (k =1,2,3), Bk sð Þ, Dk sð Þ (k =2,3,4) and substituting the

solutions into Eq. (17) and applying the boundary condition (12), it can be obtained

Case I:

2

p

Z 1

0

fw sð Þ cos sxð Þds ¼ 0; x > a; ð33:1Þ

2

p

Z 1

0

sN sð Þ fw sð Þ cos sxð Þds ¼ �s0; 0 < x < a: ð33:2Þ

Case II:

2

p

Z 1

0

fw sð Þ cos sxð Þds ¼ 0; x > a; ð34:1Þ
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2

p

Z 1

0

f/ sð Þ cos sxð Þds ¼ 0; x > a; ð34:2Þ

2

p
l 0ð Þ

Z 1

0

sX sð Þfw sð Þ cos sxð Þds ¼ �s0 1� k0 Dr � 1ð Þ½ �; 0 < x < a; ð34:3Þ

2

p

Z 1

0

sW sð Þ e
0ð Þ

15 fw sð Þ � e 0ð Þ
11 f/ sð Þ

h i
cos sxð Þds ¼ k0

e 0ð Þ
11

e
0ð Þ

15

s0 Dr � 1ð Þ; 0 < x < a; ð34:4Þ

where

Dr ¼ Dc
y

.
D0; k0 ¼

e
0ð Þ

15 D0

e 0ð Þ
11 s0

and N sð Þ ¼ � e
ð0Þ2
15

eð0Þ11

W sð Þ þ lð0ÞX sð Þ:

in which W sð Þ and X sð Þ are known functions and given in the Appendix.

3 Solution of the dual integral equations

The Schmidt method [18]–[20] is used to solve the dual integral equations (33) and (34). The

jumps of the displacements and electric potentials are represented by the following series:

fw xð Þ ¼
X1

n¼1

an P
1
2;

1
2ð Þ

2n�2

x

a

� �
1� x2

a2

� �1
2

; 0 < x � a; ðfor case I and IIÞ ð35:1Þ

f/ xð Þ ¼
X1

n¼1

bn P
1
2;

1
2ð Þ

2n�2

x

a

� �
1� x2

a2

� �1
2

; 0 < x � a; ðfor case II; f/ xð Þ ¼ 0 for case IÞ ð35:2Þ

where an and bn are unknown coefficients to be determined and P
ð1=2;1=2Þ
n ðxÞ is a Jacobi

polynomial [21]. The Fourier transform of Eq. (35) is [22]

fw sð Þ ¼
X1

n¼1

anGn

1

s
J2n�1 sað Þ; ð36:1Þ

f/ sð Þ ¼
X1

n¼1

bnGn

1

s
J2n�1 sað Þ; ð36:2Þ

where Gn ¼ 2
ffiffiffi
p
p
�1ð Þn�1C 2n�1

2ð Þ
2n�2ð Þ! : C xð Þ and Jn xð Þ are the Gamma and Bessel functions,

respectively.

Substituting Eq. (36) into Eqs. (33) and (34), Eqs. (33.1) and (34.1,2) are automatically

satisfied. The Eqs. (33.2) and (34.3, .4) reduce to the form after integration with respect to x for

0;x½ �
X1

n¼1

anGn

Z 1

0

1

s
N sð ÞJ2n�1 sað Þ sin sxð Þds ¼ � ps0

2
x; ðfor case IÞ ð37:1Þ

X1

n¼1

anGn

Z 1

0

1

s
X sð ÞJ2n�1 sað Þ sin sxð Þds ¼ � ps0

2l 0ð Þ 1� k0 Dr � 1ð Þ½ �x; ðfor case IIÞ ð37:2Þ

X1

n¼1

cnGne 0ð Þ
11

Z 1

0

1

s
W sð ÞJ2n�1 sað Þ sin sxð Þds ¼ ps0

2
k0

e 0ð Þ
11

e
0ð Þ

15

Dr � 1ð Þx; ðfor case IIÞ ð37:3Þ

where cn ¼
e

0ð Þ
15

e 0ð Þ
11

an � bn.
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From the relationship as in Gradshteyn and Ryzhik’s work [21],

Z 1

0

1

s
Jn snð Þ sin swð Þds ¼

sin n sin�1 w=nð Þ½ �
n

; n > w

nn sin np=2ð Þ
n wþ

ffiffiffiffiffiffiffiffiffiffi
w2�n2
p	 
n ; w > n

8
><

>:
ð38Þ

the semi-infinite integral in Eq. (37) can be modified as

Z 1

0

1

s
N sð ÞJ2n�1 sað Þ sin sxð Þds ¼ Nc

1

2n� 1
sin 2n� 1ð Þ sin�1 x

a

� �h i

þ
Z 1

0

1

s
N sð Þ � Nc½ �J2n�1 sað Þ sin sxð Þds; ð39:1Þ

Z 1

0

1

s
X sð ÞJ2n�1 sað Þ sin sxð Þds ¼ Xc

1

2n� 1
sin 2n� 1ð Þ sin�1 x

a

� �h i

þ
Z 1

0

1

s
X sð Þ � Xc½ �J2n�1 sað Þ sin sxð Þds; ð39:2Þ

Z 1

0

1

s
W sð ÞJ2n�1 sað Þ sin sxð Þds ¼ Wc

1

2n� 1
sin 2n� 1ð Þ sin�1 x

a

� �h i

þ
Z 1

0

1

s
W sð Þ �Wc½ �J2n�1 sað Þ sin sxð Þds; ð39:3Þ

where Nc ¼ lim
s!1

N sð Þ, Xc ¼ lim
s!1

X sð Þ and Wc ¼ lim
s!1

W sð Þ are given in the Appendix.

The integrands of the semi-infinite integral in Eq. (39) can be evaluated directly. Equation (37)

can now be solved for the coefficients an and bn by the Schmidt method. For brevity, Eq. (37.1)

can be rewritten as (Eqs. (37.2,3) can be solved using similar method as following):

X1

n¼1

anEn xð Þ ¼ U xð Þ; 0 < x < a; ð40Þ

where EnðxÞ and UðxÞare known functions and the coefficients an are to be determined. A set of

functions PnðxÞ which satisfy the orthogonality condition

Z a

0

Pm xð ÞPn xð Þdx ¼ Nndmn; Nn ¼
Z a

0

P2
n xð Þdx ð41Þ

can be constructed from the function EnðxÞ, such that

Pn xð Þ ¼
Xn

i¼1

Min

Mnn

Ei xð Þ; ð42Þ

where Mij is the cofactor of the element dij of Dn, which is defined as

Dn ¼

d11 d12 d13 ::: d1n

d21 d22 d23 ::: d2n

d31 d32 d33 ::: d3n

::: ::: ::: ::: :::

dn1 dn2 dn3 ::: dnn

2

6666664

3

7777775

; dij ¼
Z a

0

Ei xð ÞEj xð Þdx: ð43Þ
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Using Eqs. (40)–(43), we obtain

an ¼
X1

j¼n

qj

Mnj

Mjj

with qj ¼
1

Nj

Z a

0

U xð ÞPj xð Þdx: ð44Þ

4 Field intensity factors

The coefficients an and bn are known, so that the entire stress and the electric displacement

fields can be obtained. sðkÞyz and D
ðkÞ
y along the crack line can be expressed, respectively, as

Case I:

sð2Þyz x; 0ð Þ ¼ sð3Þyz x; 0ð Þ ¼ 2

p

X1

n¼1

anGn

Z 1

0

Nc þ N sð Þ � Nc½ �f gJ2n�1 sað Þ cos sxð Þds; ð45:1Þ

Dð2Þy x; 0ð Þ ¼ Dð3Þy x; 0ð Þ ¼ 2

p

X1

n¼1

anGn

Z 1

0

e
ð0Þ
15 Wc þ W sð Þ �Wc½ �f gJ2n�1 sað Þ cos sxð Þds: ð45:2Þ

Case II:

sð2Þyz x; 0ð Þ ¼ sð3Þyz x; 0ð Þ ¼ 2

p

X1

n¼1

anGn

Z 1

0

Nc þ N sð Þ � Ncf gJ2n�1 sað Þ cos sxð Þds

þ 2

p

X1

n¼1

bnGn

Z 1

0

e
0ð Þ

15 Wc þ W sð Þ �Wc½ �f gJ2n�1 sað Þ cos sxð Þds; ð46:1Þ

Dð2Þy x; 0ð Þ ¼ Dð3Þy x; 0ð Þ ¼ 2

p

X1

n¼1

anGn

Z 1

0

e
0ð Þ

15 Wc þ W sð Þ �Wc½ �f gJ2n�1 sað Þ cos sxð Þds

� 2

p

X1

n¼1

bnGn

Z 1

0

e 0ð Þ
11 Wc þ W sð Þ �Wc½ �f gJ2n�1 sað Þ cos sxð Þds: ð46:2Þ

From the relationship [21],

Z 1

0

Jn snð Þ cos swð Þds ¼

cos n sin�1 w=nð Þ½ �ffiffiffiffiffiffiffiffiffiffi
n2�w2
p

;
; n > w

� nn sin np=2ð Þffiffiffiffiffiffiffiffiffiffi
w2�n2
p

wþ
ffiffiffiffiffiffiffiffiffiffi
w2�n2
p	 
n ; w > n

8
>><

>>:
ð47Þ

the singular part of the stress field and the singular part of the electric displacement field can be

expressed as follows:

Case I:

sð2Þyz ¼ �
2Nc

p

X1

n¼1

anGnHn xð Þ; for x > a; ð48:1Þ

Dð2Þy ¼ �e
ð0Þ
15

2Wc

p

X1

n¼1

anGnHn xð Þ; for x > a: ð48:2Þ
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Case II:

sð2Þyz ¼ �
2

p
Nc

X1

n¼1

anGnHn xð Þ � 2

p
Wce

0ð Þ
15

X1

n¼1

bnGnHn xð Þ

¼ � 2

p

X1

n¼1

anNc þ bne
ð0Þ
15 Wc

n o
GnHn xð Þ; for x > a; ð49:1Þ

Dð2Þy ¼ �
2

p
e

0ð Þ
15 Wc

X1

n¼1

anGnHn xð Þ þ 2

p
e 0ð Þ

11 Xc

X1

n¼1

bnGnHn xð Þ

¼ � 2

p

X1

n¼1

e
0ð Þ

15 Ncan � e 0ð Þ
11 Ncbn

h i
GnHn xð Þ; for x > a; ð49:2Þ

where Hn xð Þ ¼ ð�1Þn�1
a2n�1

ffiffiffiffiffiffiffiffiffiffi
x2�a2
p

xþ
ffiffiffiffiffiffiffiffiffiffi
x2�a2
p½ �2n�1 :

We obtain the stress intensity factors as

Case I:

KIII ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p x� að Þ

p
sð2Þyz ¼ �

4Ncffiffiffi
a
p

X1

n¼1

an

C 2n� 1
2

� �

2n� 2ð Þ! ¼
2
ffiffiffi
a
p

X1

n¼1

anc
0ð Þ

44

C 2n� 1
2

� �

2n� 2ð Þ! : ð50Þ

Case II:

KIII ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p x� að Þ

p
sð2Þyz ¼ �

4
ffiffiffi
a
p
X1

n¼1

anNc þ e
0ð Þ

15 Wcbn

n oC 2n� 1
2

� �

2n� 2ð Þ! :

¼ 2
ffiffiffi
a
p

X1

n¼1

c
0ð Þ

44 an þ e
0ð Þ

15 bn

n oC 2n� 1
2

� �

2n� 2ð Þ! : ð51Þ

We obtain the electric displacement intensity factors as

Case I:

DIII ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p x� að Þ

p
Dð2Þy ¼

2
ffiffiffi
a
p

X1

n¼1

e
ð0Þ
15 an

C 2n� 1
2

� �

2n� 2ð Þ! ¼
e
ð0Þ
15

c
0ð Þ

44

KIII : ð52Þ

Case II:

DIII ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p x� að Þ

p
Dð2Þy ¼

2
ffiffiffi
a
p

X1

n¼1

e
0ð Þ

15 an � e 0ð Þ
11 bn

h iC 2n� 1
2

� �

2n� 2ð Þ! : ð53Þ

5 Numerical calculations and discussion

From the works [23]–[25] it can be seen that the Schmidt method is performed satisfactorily if

the first ten terms of the infinite series in Eq. (40) are obtained. To examine the effect of electro-

elastic coupling properties on the dynamic stress intensity factors, the solutions of the field

equations have been computed numerically. The material along the plane y ¼ 0 is assumed to

be commercially available piezoelectric ceramic PZT-4. The material constants are

c
ð0Þ
44 ¼ 2:56� 1010 N=m2; e

ð0Þ
15 ¼ 12:7 C=m2; eð0Þ11 ¼ 64:6� 10�10 C=Vm .

From the results in Figs. 2–8, the following observations are very significant:

(i) From Eqs. (50)–(53), it can be given that the stress and electric displacement fields near the

crack tips in FGPMs still possess the square root singularity as discussed in [4].
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(ii) Figure 2 displays the normalized dynamic SIFs kIII ¼ KIII=ðs0

ffiffiffiffiffiffi
pa
p
Þversus the wave number

xa=c for homogeneous piezoelectric material (ba ¼ 0) under permeable and impermeable

(Dr=0) electric boundary conditions. From this figure, it can be seen that the numerical

results of normalized dynamic SIFs are the same as the results investigated by Wang and

Meguid [26] using the integral equation method.

(iii) Figures 3 and 4 show the effect of the wave number xa=c under different ba and Dr on the

normalized dynamic SIFs for case I and II. It can be seen that the normalized dynamic

SIFs increase with the increase of the wavenumber xa=c until they reach a peak value, and

then decrease with the increase of xa=c. The present results show a similar trend to those

for inhomogeneous materials without piezoelectric effect.

(iv) Figure 4 shows the effect of the electric boundary condition Dr on the normalized dynamic

SIFs for h1=a ¼ h2=a ¼ 0:5; k0 ¼ 1:0 and ba ¼ 1:0 for case I and II. From this figure, it

can be seen that the normalized dynamic SIFs increase with increasing Dr. However, the

results of the normalized dynamic SIFs under permeable electric boundary condition are

different from ones under limited permeable electric boundary condition when Dr ¼ 1:0.

The reason is that the electric potential is not continuous across the crack surfaces under

limited permeable electric boundary condition.
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(iv) Figures 5 and 6 illustrate the variations of the normalized dynamic SIFs with the thickness

of the FGPM layer ðh1 þ h2Þ=a under different ba. It is observed that the normalized

dynamic SIFs increase with the increasing of h1=a ¼ h2=a under different ba 6¼ 0. When

ba ¼ 0, the normalized dynamic SIFs keep steady values. It can be explained by the

reason that, in this case, the crack lies in a homogeneous piezoelectric infinite plane and

the effects of h1=a ¼ h2=a on the normalized dynamic SIFs vanish.

(vi) Figures 7 and 8 show the effect of the thickness of the FGPM layer h1=a and h2=a on the

normalized dynamic SIFs under different ba. Figure 7 displays the normalized dynamic

SIFs versus h1=a for xa=c ¼ 0:5;Dr ¼ 0:5;h2=a ¼ 1:0 and k0 ¼ 2:0. The normalized

dynamic SIFs decrease with the increase of h1=a, then they tend to keep steady value as

shown in Fig. 7. It can be explained by the reasons that, as h1=a is increasing, the material

of upper half plane becomes ‘‘harder’’ while the material of the lower half plane does

not change. Figure 8 shows the normalized dynamic SIFs versus h2=a for

xa=c ¼ 0:5;Dr ¼ 0:5;h1=a ¼ 1:0 and k0 ¼ 2:0. From this figure, it can be seen that the

normalized dynamic SIFs increase with the increase of h2=a ¼ 1:0, and then tend to keep

steady. The reason of those results shown in Fig. 8 is that, as h2=a is increasing, the

0.0 0.5 1.0 1.5 2.0
0.0

0.4

0.8

1.2

1.6

2.0

N
or

m
al

iz
ed

 d
yn

am
ic

 S
IF

 k
II

I

wa/c

 Dr = 1
 Dr = 0.5
 Dr = 0
 permeable

Fig. 4. The normalized dynamic SIFs
versus xa=c for h1=a ¼ h2=a=0.5,

k0 ¼ 1:0 and ba ¼ 1:0 (case I and II)
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material of lower half plane becomes ‘‘softer’’ while the material of the upper half plane

does not change.

(vii) Figure 9 shows the effect of electric loading k0 under different Dr on normalized dynamic

SIFs. It can be seen that the effect of external electric loading upon the normalized

dynamic SIFs becomes smaller as Dr is increasing. Especially, when Dr ¼ 1:0, the electric

loading has no effect on normalized dynamic SIFs. The explanation for this phenomenon

is that, in this case, the external electric displacement loading is continuous across the

crack surfaces.

(viii) Figures 3 and 5–8 also show the effect of the gradient parameter of the FGPM ba on

normalized dynamic SIFs. It can be obtained that the normalized dynamic SIFs increase

with increasing ba. This means that by decreasing the gradient parameter of FGPMs, the

dynamic stress intensity factors can be reduced.

(ix) Based on the numerical calculation outlined above, it can be concluded that the nor-

malized dynamic SIFs depend on the gradient parameter of the FGPM, thickness of the

FGPM layers, electric boundary condition, wave number and electric loading.

Appendix

W sð Þ ¼ aðsÞ
bðsÞ ; X sð Þ ¼ v sð Þ

d sð Þ ;

a sð Þ ¼ a1 sð Þ þ a2 sð Þ½ � a3 sð Þ þ a4 sð Þ½ �; a1 sð Þ ¼ eh2 n2�n1ð ÞN2 N1 � 1ð Þ; a2 sð Þ ¼ �N1 N2 � 1ð Þ;

a3 sð Þ ¼ N2 N1 þ 1ð Þ; a4 sð Þ ¼ �eh2 n2�n1ð ÞN1 N2 þ 1ð Þ; b sð Þ ¼ N1 � N2ð Þ b1 sð Þ þ b2 sð Þ½ �;

b1 sð Þ ¼ N2 � 1ð Þ N1 þ 1ð Þ; b2 sð Þ ¼ �e h1þh2ð Þ n2�n1ð Þ N1 � 1ð Þ N2 þ 1ð Þ;

v sð Þ ¼ v1 sð Þ þ v2 sð Þ½ � v3 sð Þ þ v4 sð Þ½ �; v1 sð Þ ¼ �eh2 m2�m1ð ÞM2 M1 � Kð Þ; v2 sð Þ ¼ M1 M2 � Kð Þ;

v3 sð Þ ¼ M2 M1 þ Kð Þ; v4 sð Þ ¼ �eh1 m2�m1ð ÞM1 M2 þ Kð Þ; d sð Þ ¼ M1 �M2ð Þ d1 sð Þ þ d2 sð Þ½ �;

d1 sð Þ ¼ M2 � Kð Þ M1 þ Kð Þ; d2 sð Þ ¼ �e h1þh2ð Þ m2�m1ð Þ M1 � Kð Þ M2 þ Kð Þ
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Wc ¼ lim
s!1

W sð Þ ¼ ac

bc

¼ � 1

2
; Xc ¼ lim

s!1
X sð Þ ¼ vc

dc

¼ � 1

2
; Nc ¼ �

e
ð0Þ2
15

eð0Þ11

Wc þ lð0ÞXc ¼ �
1

2
c

0ð Þ
44 ;

where

M1 ¼ �
b
2s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

� �2
1

s2
þ 1� x2

c2s2

s

; M2 ¼ �
b
2s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

� �2
1

s2
þ 1� x2

c2s2

s

;

N1 ¼ �
b
2s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

� �2
1

s2
þ 1

s

; N2 ¼ �
b
2s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2

� �2
1

s2
þ 1

s

; K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

c2s2

r
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